was due to impurities in alkali halide crystals | 3 | | - 1 | 1 | | |----------------------------|----------------------------------|----------------------|-------------|----------------------------| | Charil | Impurity | Peak
(Å) | Ref.
No. | Max.
pressure
(atm.) | | No. C. T. | Thallium
Thallium
Thallium | 2540
2670
2930 | 8
8
8 | 50000
127000
50000 | | 144 | Thallium | 2475
2610 | 8 | 50000
130000 | | 1,30 | Thallium
Thallium | 2870 | 8 | 129500 | | 10 Pr | Thallium
Thallium | 2590
2860 | 8 | 94000
110000 | | 191
Olle | Thallium | 2630 | 8 | 158000
118000 | | ##K1 0-2KBr | Thallium
Thallium | 2990
2858 | _ | 124000 | | **KI 0.4KBr | Thallium
Thallium | 2836
2810 | | 50000
50000 | | *4K1 0.6KBr
*2K1/0.8KBr | Thallium | 2708
2815 | - 9 | 50000
120500 | | KCI
KBr | Indium
Indium | 2930 | 10 | 131000 | | KBr | Bismuth
Lead | 3712
2740 | 11 | 114000
131000 | | NiCl
NaBr | Lead | 3040 | 11 - | 111500 | | NaI
KCI | Lead
Lead | 3578
2730 | 11 | 140000 | | KBr | Lead
Lead | 3020
3542 | 11 | 170000
130500 | | KI
RbCl | Lead | 2720 | 11 | 50000
120000 | | RbBr
RbI | Lead
Lead | 3004
3541 | _ | 5000 | | CsCl | Lead
Lead | 2849
3705 | _ | 89000
50000 | | CsI
NH ₄ Br | Lead | 3077 | _ | 143000 | | NH ₄ I
KCl | Lead
Copper | 3580
2650 | 12 | 50000 | | KBr | (ic)
Copper
(ic) | 2650 | 12 | 117000 | | | j | J | | | ions next to the impurity produce at most a perturbation on the system, but not a first-order effect. This is consistent with the Seitz model, but inconsistent with the complex ion model. At phase transitions, such as occur in the potassium halides at around 20,000 atm, a discontinuous shift in the A-band frequency is observed. These shifts are to lower energies for the alkali iodides and to higher energies for the alkali bromides or chlorides. This is possibly related to the much stronger spin-orbital interaction Fig. 2. Initial frequency shift vs. pressure—ten alkali halides activated by Tl⁺. of the iodide ion, compared to the chloride or bromide. A study was made to determine if varying the impurity concentration affected the pressure shift of the impurity spectra. Thallium activated potassium iodide, in concentrations from 2×10^{-1} per cent to 4×10^{-3} per cent was used for the study. No dependence on concentration was observed. Measurements have been made of the spectra of several mixed crystals of potassium bromide and potassium iodide, activated by thallium, and of the effect of pressure on this spectra. The spectral Fig. 3. The effect of pressure on A-band spectra in mixed crystals of KI:Tl and KBr:Tl. five alkali parative procedured es ng, press fusing ng, press fusing g, press fusing press fusing press fusing press fusing ress fusing halides is cobserved the halide